A Greenhouse Control with Sectional-Control Strategy Based on MPT Intelligent Algorithm
نویسندگان
چکیده
The greenhouse are classified as complex systems such as large lag, multi-input multi-output (MIMO), non-linear and difficult to create mathematic model and so on, so it is difficult to implement classical control methods for this kind of process. A new sectional-control strategy is put forward. It uses different control modes for different deviation domains. The new strategy is based on MPT intelligent control algorithm which improves on the traditional PID algorithm and adds in self-adapting, fuzzy control, expert self-tuning etc intelligent control functions. When the deviation exceeds a certain domain, fuzzy control is used to prevent the saturated integral; when the deviation reduces to within a certain domain, MPT algorithm is used to reduce the overshooting during response process and eventually eliminate the residual. The application in greenhouse control shows that the sectional-control strategy makes the output tracing the set value correctly.
منابع مشابه
Application Flatness Technique for Intelligent Control of a New Electric Energy Source
In this paper, an intelligent control strategy based on combination of the “flatness based control technique” and the “perturbation and observation (P&O) MPPT algorithm” is developed and investigated to control a hybrid electric energy source (HEPS). This EHPS is composed of a fuel cell system (FC) and a solar panel (SP), as the main source and a supercapacitor bank (SC), as the auxiliary sourc...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملAn Intelligent Control Strategy in a Parallel Hybrid Vehicle
This paper presents a design procedure for an adaptive power management control strategy based on a driving cycle recognition algorithm. The design goal of the control strategy is to minimize fuel consumption and engine-out NOx, HC and CO emissions on a set of diversified driving schedules. Seven facility-specific drive cycles are considered to represent different driving scenarios. For each fa...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملFrequency Control of an Islanded Microgrid based on Intelligent Control of Demand Response using Fuzzy Logic and Particle Swarm Optimization (PSO) Algorithm
Due to the increasing penetration of renewable energies in the power system, the frequency control problem has attracted more attention, while the traditional control methods are not capable of regulating the frequency and securing the stability of the system. In smart grids, demand response as the frequency control tool reduces the dependence on spinning reserve and high cost controllers. In a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012